Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(18): 184102, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414274

RESUMO

Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

2.
Phys Chem Chem Phys ; 10(14): 1944-59, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18368187

RESUMO

Density Functional Theory calculations are reported on cage structured BN, AlN, GaN and InN sub- and low nanosize stoichiometric clusters, including two octahedral families of T(d) and T(h) symmetry. The structures and energetics are determined, and we observe that BN clusters in particular show high stability with respect to the bulk phase. The cluster formation energy is demonstrated to include a constant term that we attribute to the curvature energy and the formation of six tetragonal defects. The (BN)(60) onion double-bubble structure was found to be particularly unstable. In contrast, similar or greater stability was found for double and single shell cages for the other nitrides. The optical absorption spectra have been first characterised by the one-electron Kohn-Sham orbital energies for all compounds, after which we concentrated on BN where we employed a recently developed Time Dependent Density Functional Theory approach. The one-electron band gaps do not show a strong and consistent size dependency, in disagreement with the predictions of quantum confinement theory. The density of excited bound states and absorption spectrum have been calculated for four smallest BN clusters within the first ionisation potential cut-off energy. The relative stability of different BN clusters has been further explored by studying principal point defects and their complexes including topological B-N bond rotational defects, vacancies, antisites and interstititials. The latter have the lowest energy of formation.


Assuntos
Compostos de Boro/química , Boro/química , Nanotecnologia/métodos , Nanotubos/química , Nitrogênio/química , Óptica e Fotônica , Absorção , Algoritmos , Elétrons , Modelos Moleculares , Tamanho da Partícula , Teoria Quântica , Termodinâmica
3.
J Comput Chem ; 27(8): 926-32, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16557519

RESUMO

We describe the procedure to start an SCF calculation of the general type from a sum of atomic electron densities, as implemented in GAMESS-UK. Although the procedure is well known for closed-shell calculations and was already suggested when the Direct SCF procedure was proposed, the general procedure is less obvious. For instance, there is no need to converge the corresponding closed-shell Hartree-Fock calculation when dealing with an open-shell species. We describe the various choices and illustrate them with test calculations, showing that the procedure is easier, and on average better, than starting from a converged minimal basis calculation and much better than using a bare nucleus Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...